Reports

ENSO Outlook: December 2024

This page considers the ENSO outlook for the next three to six months, and the typical impact of El Niño and La Niña events on rainfall in Southeast Asia.

Current SST conditions are shown on the climate monitoring node website: sst - SEA Climate Monitoring

Latest Climate Outlook (December 2024 – May 2025): weak La Niña is likely to develop sometime in December 2024, with global climate models predict the La Niña conditions to persist until February 2025

Updated: Dec 2024

Recent analysis of sea surface temperature (SST) anomalies over the equatorial Pacific shows average to slightly below-average SSTs across the equatorial Pacific Ocean, and along with atmospheric indicators such as trade wind strength and cloudiness, indicate La Niña-like conditions. In the Indian Ocean, the positive Indian Ocean Dipole did not develop, and based on the recent analysis, the SST anomalies show signs of a negative Indian Ocean Dipole. 

The international climate outlooks predict that a weak La Niña is likely to develop sometime in December 2024 and persist until February 2025. After DJF 2024/2025, most models predict La Niña conditions to transition back to ENSO neutral.

The full ASEANCOF-23 Outlook Bulletin (DJF 2024/2025) can be found in the Consensus Bulletin for December-January-February (DJF) 2024/2025 Season document.

Latest Model Outlook

Model outlooks from Copernicus C3S (Figure 1), based on the Nino3.4 SST index, show that most models predict La Niña conditions in January and February 2025. For March, models predict either ENSO neutral conditions or La Niña conditions to persist. For April and May 2025, most models predict ENSO neutral conditions, although there is still a small chance that the La Niña conditions persist. Overall, most models predict La Niña-like conditions to be short-lived (i.e. not last five consecutive months to declare a La Niña event).


icon
Figure 1: Forecasts of Nino3.4 index’s strength until May 2025 from various seasonal prediction models of international climate centres (image credit: Copernicus C3S).

Impact of El Niño/La Niña on Southeast Asia

The typical impact of El Niño on Southeast Asia is drier-than-average rainfall conditions, including for much of the Maritime Continent during December to February (Figure 2, left). Warmer temperature conditions typically follow drier periods. The opposite conditions for rainfall (and consequently temperature) are observed during La Niña years (Figure 2, right).

The impact on the region’s rainfall and temperature from ENSO events is more significantly felt during strong or moderate-intensity events. Also, no two El Niño events or two La Niña events are exactly alike in terms of their impact on the region.

el_nino_la_nina_rainfall_anom_composites_DJF
Figure 2: December to February (DJF) season rainfall anomaly composites (mm/day) for El Niño (left) and La Niña (right) years. Brown (green) shades show regions of drier (wetter) conditions. Note that this anomaly composite was generated using a limited number of El Niño and La Niña occurrences between 1979 and 2021 and therefore should be interpreted with caution (data: The Global Precipitation Climatology Project (GPCP) Monthly Analysis Version 2.3).

The typical impact of El Niño on Southeast Asia is drier-than-average rainfall conditions, including during March to May (Figure 2, left). Warmer temperature conditions typically follow drier periods. The opposite conditions for rainfall (and consequently temperature) are observed during La Niña years (Figure 2, right).

The impact on the region’s rainfall and temperature from ENSO events is more significantly felt during strong or moderate-intensity events. Also, no two El Niño events or two La Niña events are exactly alike in terms of their impact on the region.

el_nino_la_nina_rainfall_anom_composites_MAM

Figure 2: March to May (MAM) season rainfall anomaly composites (mm/day) for El Niño (left) and La Niña (right) years. Brown (green) shades show regions of drier (wetter) conditions. Note that this anomaly composite was generated using a limited number of El Niño and La Niña occurrences between 1979 and 2021 and therefore should be interpreted with caution (data: The Global Precipitation Climatology Project (GPCP) Monthly Analysis Version 2.3).

The typical impact of El Niño on Southeast Asia is drier-than-average rainfall conditions, including for much of the Maritime Continent during June to August (Figure 2, left). Warmer temperature conditions typically follow drier periods. The opposite conditions for rainfall (and consequently temperature) are observed during La Niña years (Figure 2, right).

The impact on the region’s rainfall and temperature from ENSO events is more significantly felt during strong or moderate-intensity events. Also, no two El Niño events or two La Niña events are exactly alike in terms of their impact on the region.

el_nino_la_nina_rainfall_anom_composites_JJA
Figure 2: June to August (JJA) season rainfall anomaly composites (mm/day) for El Niño (left) and La Niña (right) years. Brown (green) shades show regions of drier (wetter) conditions. Note that this anomaly composite was generated using a limited number of El Niño and La Niña occurrences between 1979 and 2021 and therefore should be interpreted with caution (data: The Global Precipitation Climatology Project (GPCP) Monthly Analysis Version 2.3).

The typical impact of El Niño on Southeast Asia is drier-than-average rainfall conditions, including for much of the Maritime Continent during September to November (Figure 2, left). Warmer temperature conditions typically follow drier periods. The opposite conditions for rainfall (and consequently temperature) are observed during La Niña years (Figure 2, right).

The impact on the region’s rainfall and temperature from ENSO events is more significantly felt during strong or moderate-intensity events. Also, no two El Niño events or two La Niña events are exactly alike in terms of their impact on the region.

el_nino_la_nina_rainfall_anom_composites_SON
Figure 2: September to November (SON) season rainfall anomaly composites (mm/day) for El Niño (left) and La Niña (right) years. Brown (green) shades show regions of drier (wetter) conditions. Note that this anomaly composite was generated using a limited number of El Niño and La Niña occurrences between 1979 and 2021 and therefore should be interpreted with caution (data: The Global Precipitation Climatology Project (GPCP) Monthly Analysis Version 2.3).

The qualitative outlook is assessed for the region in general. For specific updates on the national scale, the relevant ASEAN National Meteorological and Hydrological Services should be consulted.
TOP